Name: 2018 Imagery
Display Field:
Type: Raster Layer
Geometry Type: null
Description: <DIV STYLE="text-align:Left;"><DIV><DIV><P STYLE="margin:0 0 0 0;"><SPAN>Digital imagery was collected at a nominal GSD of 40cm or 50cm using 2 Cessna 441 flying at an average flight height of 8400m AGL for the SH100/SH120 acquisition. Aircraft flew with Leica Geosystem's ADS100/SH120 digital sensors with firmware 4.60. Each sensor collected 12 image bands Red, Green, Blue and Near-infrared at each of three look angles; Backward 19 degrees, Forward 26 degrees and Nadir for the SH100. Backward 10 degrees, Forward 14 degrees, and Nadir for the SH120. The Nadir Green band was collected in high resolution mode effectively doubling the resolution for that band. The ADS100/ADS120 spectral ranges are; Red 619-651nm, Green 525-585nm, Blue 435-495nm and Near-infrared at 808-882nm. The CCD arrays have a pixel size of 5.0 microns in a 20000x1 format at nadir; a 18000x1 format at the backward look angle and a 16000x1 format at the forward look angle. The CCD's have a dynamic range of 72db and the A/D converters have a resolution of 14bits. The ADS is a push-broom sensor the ground footprint of the imagery is approximately 4.8km wide at a nominal 40cm GSD, and 7.2km wide at a nominal 60cm GSD by the length flightline. The maximum flightline length is limited to approximately 100km. The factory calibrations and IMU alignments for each sensor (Serial Numbers: 10540, 10511, 12529) were tested and verified by in-situ test flights before the start of the project. The Leica MissionPro Flight Planning Software is used to develop the flight acquisition plans. Flight acquisition sub blocks are designed first to define the GNSS base station logistics, and to break the project up into manageable acquisition units. The flight acquisition sub blocks are designed based on the specified acquisition season, native UTM zone of the DOQQs, flight line length limitations (to ensure sufficient performance of the IMU solution) as well as air traffic restrictions in the area. Once the sub blocks have been delineated they are brought into MissionPro for flight line design. The design parameters used in MissionPro will be 30% lateral overlap and 40cm or 60cm resolution. The flight lines have been designed with a north/south orientation or east/west where required for efficiency. The design takes into account the latitude of the state, which affects line spacing due to convergence as well as the terrain. SRTM elevation data is used in the MissionPro design to ensure the 40cm or 60cm GSD is achieved over all types of terrain. The raw data was downloaded from the sensors after each flight using Leica XPro software. The imagery was then georeferenced using the 200Hz GPS/INS data creating an exterior orientation for each scan line (x/y/z/o/p/k). Leica Xpro APM software was used to automatically generate tiepoint measurements between the forward, nadir and backward look angles for each line and to tie all flight lines together. The resulting point data and exterior orientation data were used to perform a full bundle adjustment using ORIMA software. Blunders were removed, and additional tie points measured in weak areas to ensure a robust solution. Once the point data was clean and point coverage was acceptable, photo-identifiable GPS-surveyed ground control points were introduced into the block adjustment. The bundle adjustment process produces revised exterior orientation data for the sensor with GPS/INS, datum, and sensor calibration errors modeled and removed. Using the revised exterior orientation from the bundle adjustment, orthorectified image strips were created with Xpro software and the HxIP derived DEM. The Xpro orthorectification software applies an atmospheric-BRDF radiometric correction to the imagery. This correction compensates for atmospheric absorption, solar illumination angle and bi-directional reflectance. The orthorectified strips were then overlaid with each other and the ground control to check accuracy. Once the accuracy of the orthorectified image strips were validated the strips were then imported into Inpho's OrthoVista 7.1.2 package which was used for the final radiometric balance, mosaic, and DOQQ sheet creation. The final DOQQ sheets, with a 300m buffer and a ground pixel resolution of 30cm were then combined and compressed to create the final ortho mosaics.</SPAN></P></DIV></DIV></DIV>
Service Item Id: 7011d8d8944c4d3fa21e9ccb18835b27
Copyright Text: Hexagon, Quantum Spatial, Tahoe Regional Planning Agency
Default Visibility: true
MaxRecordCount: 0
Supported Query Formats: JSON, geoJSON, PBF
Min Scale: 0
Max Scale: 0
Supports Advanced Queries: false
Supports Statistics: false
Has Labels: false
Can Modify Layer: false
Can Scale Symbols: false
Use Standardized Queries: true
Supports Datum Transformation: true
Extent:
XMin: -1.338847972355005E7
YMin: 4678415.401043845
XMax: -1.3341886062345203E7
YMax: 4769937.296162195
Spatial Reference: 102100
(3857)
Drawing Info:
Advanced Query Capabilities:
Supports Statistics: false
Supports OrderBy: false
Supports Distinct: false
Supports Pagination: false
Supports TrueCurve: true
Supports Returning Query Extent: true
Supports Query With Distance: true
Supports Sql Expression: false
Supports Query With ResultType: false
Supports Returning Geometry Centroid: false
Supports Binning LOD: false
Supports Query With LOD Spatial Reference: false
Supports Percentile Statistics: false
Supports Having Clause: false
Supports Count Distinct: false
Supports Time Relation: true
Supports Sql Format: false
Supports Query Analytic: false
Supports Query With Current User: true
HasZ: false
HasM: false
Has Attachments: false
HTML Popup Type: esriServerHTMLPopupTypeNone
Type ID Field: null
Fields:
None
Supported Operations:
Query
Query Attachments
Query Analytic
Generate Renderer
Return Updates
Iteminfo
Thumbnail
Metadata